PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification
نویسندگان
چکیده
In this work, we propose a PAC-Bayes bound for the generalization risk of the Gibbs classifier in the multi-class classification framework. The novelty of our work is the critical use of the confusion matrix of a classifier as an error measure; this puts our contribution in the line of work aiming at dealing with performance measure that are richer than mere scalar criterion such as the misclassification rate. Thanks to very recent and beautiful results on matrix concentration inequalities, we derive two bounds showing that the true confusion risk of the Gibbs classifier is upper-bounded by its empirical risk plus a term depending on the number of training examples in each class. To the best of our knowledge, this is the first PAC-Bayes bounds based on confusion matrices.
منابع مشابه
PAC-Bayesian Generalization Bound for Density Estimation with Application to Co-clustering
We derive a PAC-Bayesian generalization bound for density estimation. Similar to the PAC-Bayesian generalization bound for classification, the result has the appealingly simple form of a tradeoff between empirical performance and the KL-divergence of the posterior from the prior. Moreover, the PACBayesian generalization bound for classification can be derived as a special case of the bound for ...
متن کاملPAC-Bayesian Bounds for Discrete Density Estimation and Co-clustering Analysis
We applied PAC-Bayesian framework to derive generalization bounds for co-clustering. The analysis yielded regularization terms that were absent in the preceding formulations of this task. The bounds suggested that co-clustering should optimize a trade-off between its empirical performance and the mutual information that the cluster variables preserve on row and column indices. Proper regulariza...
متن کاملA PAC-Bayesian Tutorial with A Dropout Bound
This tutorial gives a concise overview of existing PAC-Bayesian theory focusing on three generalization bounds. The first is an Occam bound which handles rules with finite precision parameters and which states that generalization loss is near training loss when the number of bits needed to write the rule is small compared to the sample size. The second is a PAC-Bayesian bound providing a genera...
متن کاملune approche PAC-Bayésienne PAC-Bayesian Statistical Learning Theory
This PhD thesis is a mathematical study of the learning task – specifically classification and least square regression – in order to better understand why an algorithm works and to propose more efficient procedures. The thesis consists in four papers. The first one provides a PAC bound for the L generalization error of methods based on combining regression procedures. This bound is tight to the...
متن کاملThéorie Statistique de l’Apprentissage: une approche PAC-Bayésienne PAC-Bayesian Statistical Learning Theory
This PhD thesis is a mathematical study of the learning task – specifically classification and least square regression – in order to better understand why an algorithm works and to propose more efficient procedures. The thesis consists in four papers. The first one provides a PAC bound for the L generalization error of methods based on combining regression procedures. This bound is tight to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1202.6228 شماره
صفحات -
تاریخ انتشار 2012